Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Expert Opin Pharmacother ; 24(5): 551-555, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2271504

ABSTRACT

INTRODUCTION: Montelukast is a leukotriene inhibitor that is widely used to treat chronic asthma and allergic rhinitis. The drug interferes with molecular signaling pathways produced by leukotrienes in a variety of cells and tissues throughout the human body that lead to tightening of airway muscles, production of aberrant pulmonary fluid (airway edema), and in some cases, pulmonary inflammation. AREAS COVERED: Montelukast has also been noted to have anti-inflammatory properties, suggesting it may have a role in the treatment of coronavirus disease 2019 (COVID-19), the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which has been noted to induce misfiring of the immune system in some patients. A literature search of PubMed was performed to identify all relevant studies of montelukast and SARS-CoV-2 through 27 January 2023. EXPERT OPINION: Montelukast has been the subject of small studies of SARS-CoV-2 and will be included in a large, randomized, double-blind, placebo-controlled study of outpatients with COVID-19 sponsored by the United States National Institutes of Health known as Accelerating COVID-19 Therapeutic Interventions and Vaccines-6. This paper reviews what is known about montelukast, an inexpensive, well-tolerated, and widely available medication, and examines the rationale for using this drug to potentially treat patients with COVID-19.


Subject(s)
Asthma , COVID-19 , Quinolines , Humans , Leukotriene Antagonists/therapeutic use , SARS-CoV-2 , Asthma/drug therapy , Acetates/therapeutic use , Quinolines/therapeutic use , Quinolines/pharmacology , Cyclopropanes/therapeutic use , Sulfides/therapeutic use , Double-Blind Method , Randomized Controlled Trials as Topic
2.
Sci Rep ; 13(1): 1676, 2023 01 30.
Article in English | MEDLINE | ID: covidwho-2221854

ABSTRACT

Spiro[benzo[h]quinoline-7,3'-indoline]diones and spiro[indoline-3,4'-pyrazolo[3,4-b]quinoline]diones were efficiently synthesized via one-pot multi-component reactions under ultrasound-promoted conditions. Spiro[benzo[h]quinoline-7,3'-indoline]dione derivatives were successfully developed by the reaction of isatins, naphthalene-1-amine and 1,3-dicarbonyl compounds. The spiro[indoline-3,4'-pyrazolo[3,4-b]quinoline]dione derivatives were prepared by the reaction of isatins, 5-amino-1-methyl-3-pheylpyrazole, and 1,3-dicarbonyl compounds by using ( ±)-camphor-10-sulfonic acid as a catalyst in H2O/EtOH (3:1 v/v) solvent mixture. The antibacterial activity of the synthesized compounds was evaluated against, Enterococcus faecalis, Staphylococcus aureus and Candida albicans. Compounds 4b, 4h, and 6h showed the strongest antimicrobial activity toward both bacteria. The MIC values of these compounds ranged from 375-3000 µg/mL. The effect of these compounds (4b, 4h, 6h) as a function of applied dose and time was investigated by a kinetic study, and the interaction with these antimicrobial results was simulated by a molecular docking study. We also used the docking approach with Covid-19 since secondary bacterial infections. Docking showed that indoline-quinoline hybrid compounds 4b and 4h exerted the strongest docking binding value against the active sites of 6LU7. In addition, the synthesized compounds had a moderate to good free radical scavenging activity.


Subject(s)
COVID-19 , Quinolines , Humans , Molecular Docking Simulation , Quinolines/pharmacology , Quinolines/chemistry , Anti-Bacterial Agents/pharmacology
3.
Endocrine ; 78(1): 197-200, 2022 10.
Article in English | MEDLINE | ID: covidwho-2060054

ABSTRACT

CONTEXT: Radioiodine refractory differentiated thyroid cancer can be effectively treated with multi-tyrosine-kinase inhibitors (MKIs). Hypocalcaemia has been reported among the side effects of these drugs, but little is known about its pathophysiology and clinical relevance. CASE REPORT: We report the case of a 78-years-old woman with an aggressive papillary thyroid cancer infiltrating perithyroidal structures. The extent of surgery was limited to hemithyroidectomy, RAI treatment could not be performed, and she started lenvatinib treatment. After 4 months of therapy, the patient accessed the Emergency Department for a grade III hypocalcaemia (corrected serum calcium: 6.6 mg/dL, n.v. 8.1-10.4 mg/dL), due to primary hypoparathyroidism (serum PTH: 12.6 ng/L, n.v. 13-64 ng/L). The patient was treated with intravenous calcium infusions and vitamin D supplementation. After discharge, the oral dose of carbonate calcium (CaCO3) was of 6 g/day, and was titrated according to blood exams. Two weeks after discharge, while taking CaCO3 at the dose of 3 g/day, the patient experienced symptomatic grade II hypercalcemia (corrected serum calcium: 11.6 mg/dL), associated to the spontaneous reprise of PTH secretion, and leading to oral calcium withdrawal. During the subsequent follow-up, the patient remained eucalcemic without calcium supplementation. CONCLUSIONS: Though hypocalcaemia has been described as potential side effect of MKI treatment, this is the first report of a lenvatinib-induced primary hypoparathyroidism, in a patient with a documented normal parathyroid function after surgery. The periodical assessment of calcium-phosphorus metabolism is thus warranted to prevent this potentially lethal side effect, in both post-surgical hypoparathyroid and euparathyroid patients.


Subject(s)
Hypocalcemia , Hypoparathyroidism , Thyroid Neoplasms , Aged , Calcium , Female , Humans , Hypoparathyroidism/chemically induced , Hypoparathyroidism/drug therapy , Iodine Radioisotopes/therapeutic use , Parathyroid Hormone , Phenylurea Compounds , Quinolines , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/etiology , Thyroid Neoplasms/surgery , Thyroidectomy/adverse effects
4.
Clin Respir J ; 16(9): 604-610, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1968079

ABSTRACT

INTRODUCTION: Cough is one of the most common presenting symptoms of COVID-19, which can persist for weeks or months. OBJECTIVE: The goal of this study was to evaluate the effectiveness of gabapentin (GBT) alone and in combination with montelukast (MTL) for improving cough. METHODS: In this open-label randomized controlled clinical trial, eligible cases were patients hospitalized with moderate to severe COVID-19 who had cough with a Breathlessness, Cough, and Sputum Scale (BCSS) score of at least 2 based on its cough subscale. The participants were randomly assigned to three groups including two experimental groups and one control group. The first and second experimental groups received GBT and GBT/MTL, respectively, whereas the control group received dextromethorphan (DXM). Treatment duration was 5 days in all groups. Before and after the interventions, the severity of cough was evaluated using BCSS scale and Visual Analog Scale (VAS). RESULTS: A total of 180 patients were included; GPT, GPT/MTL, and DXM consisted of 76, 51, and 53 patients, respectively. There was no significant difference between the three groups in terms of age, gender, and comorbidities (P > 0.05). Regarding BCSS and VAS scores, there was significant reduction from the baseline values in all groups (P < 0.0001), with the change rate being significantly higher in DXM group. The amount of reduction of BCSS in the GPT/MTL group was significantly more than the GPT group, whereas there was no significant difference between the two groups regarding VAS score. Although the duration of hospitalization differed between the groups with the GPT/MTL group having the shortest duration, the difference was statistically significant only between the GPT and GPT/MTL groups (P < 0.0001). CONCLUSION: GPT, both alone and in combination with MTL, improves cough frequency and severity in hospitalized patients with COVID-19, with the combination being more efficacious. This regimen may be useful in patients who cannot tolerate opioids.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Acetates , COVID-19/complications , Cough/drug therapy , Cough/etiology , Cyclopropanes , Dextromethorphan/therapeutic use , Gabapentin/therapeutic use , Humans , Quinolines , SARS-CoV-2 , Sulfides , Treatment Outcome
5.
Sci Rep ; 12(1): 6501, 2022 04 20.
Article in English | MEDLINE | ID: covidwho-1921699

ABSTRACT

TaqMan probe-based commercial real-time (RT) PCR kits are expensive but most frequently used in COVID-19 diagnosis. The unprecedented scale of SARS-CoV-2 infections needs to meet the challenge of testing more persons at a reasonable cost. This study developed a simple and cost-effective alternative diagnostic method based on melting curve analysis of SYBR green multiplex assay targeting two virus-specific genes along with a host-specific internal control. A total of 180 randomly selected samples portioning into two subsets based on crude and high-quality RNA extraction were used to compare this assay with a nationwide available commercial kit (Sansure Biotech Inc., (Hunan, China)), so that we could analyze the variation and validity of this in-house developed method. Our customized-designed primers can specifically detect the viral RNA likewise Sansure. We separately optimized SYBR Green RT-PCR reaction of N, E, S, and RdRp genes based on singleplex melting curve analysis at the initial stage. After several rounds of optimization on multiplex assays of different primer combinations, the optimized method finally targeted N and E genes of the SARS-CoV-2 virus, together with the ß-actin gene of the host as an internal control. Comparing with the Sansure commercial kit, our proposed assay provided up to 97% specificity and 93% sensitivity. The cost of each sample processing ranged between ~2 and ~6 USD depending on the purification level of extracted RNA template. Overall, this one-step and one-tube method can revolutionize the COVID-19 diagnosis in low-income countries.


Subject(s)
COVID-19 , Benzothiazoles , COVID-19/diagnosis , COVID-19 Testing , Cost-Benefit Analysis , Diamines , Humans , Quinolines , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
7.
Acta Biomed ; 93(2): e2022156, 2022 05 11.
Article in English | MEDLINE | ID: covidwho-1848005

ABSTRACT

Background and aim Recurrent wheezing is often triggered by viral respiratory infections. The aims of our study were: i) to evaluate whether the addition of a nutraceutical (Leucodif®), could improve the efficacy of montelukast or inhaled steroids (ICS) compared to the single treatment; ii) to verify whether a treatment is more effective than another. Our study was biased by the COVID-19 pandemic, which resulted in a lockdown of almost two months in Italy. Methods The multicenter, open-label study enrolled 84 children aged 2-6 years diagnosed with recurrent wheezing and randomized them into four treatment arms for three months: ICS treatment; ii) montelukast; iii) montelukast + Leucodif; iv) ICS + Leucodif. Children were assessed at baseline and after one, two, and three months of treatment using the TRACK score for both the caregiver and the physician. Results Out of the 84 patients, 18 patients received ICS therapy, 22 patients ICS + Leucodif, 24 patients montelukast, and 20 patients montelukast + Leucodif. All four treatments resulted in a significant reduction in symptoms with no differences among the various groups. Conclusions Our study demonstrates that montelukast therapy appears to be equally effective as ICS therapy and that the addition of the nutraceutical Leucodif does not appear to improve the treatment outcome. However, in our opinion our study was strongly influenced and biased by the lockdown due to the COVID-19 pandemic, which inherently resulted in reduced exposure to the viruses that commonly cause respiratory infections in children.


Subject(s)
Anti-Asthmatic Agents , Asthma , COVID-19 , Acetates , Administration, Inhalation , Anti-Asthmatic Agents/adverse effects , Asthma/drug therapy , Child , Communicable Disease Control , Cyclopropanes , Dietary Supplements , Humans , Pandemics , Quinolines , Respiratory Sounds , Steroids/therapeutic use , Sulfides
8.
Thorac Cancer ; 13(10): 1463-1470, 2022 05.
Article in English | MEDLINE | ID: covidwho-1846156

ABSTRACT

BACKGROUND: The aim of this prospective, pilot, single-arm phase II trial was to evaluate the safety and efficacy of anlotinib combined with etoposide and platinum-based regimens in the first-line treatment of extensive-stage small cell lung cancer (ES-SCLC). METHODS: This phase II study was conducted at Fudan University Shanghai Cancer Center between December 2018 and December 2020. All patients received standard chemotherapy (etoposide plus cisplatin/carboplatin) consisting of four courses and anlotinib at 12 mg once per day for 2 weeks followed by a one-week rest. Anlotinib administration was continued until disease progression, intolerable adverse events (AEs) or patient withdrawal from the study. The primary outcome measure was progression-free survival (PFS). The secondary outcome measures were overall survival (OS), objective control rate (ORR), disease control rate (DCR) and AEs. RESULTS: Thirty-seven patients were included in this study, and 30 patients were eligible for efficacy analysis. ORR and DCR were 90.0% and 96.7%, respectively. The estimated PFS and OS were 6.0 months (95% CI: 1.1-11.9 months) and 14.0 months (95% CI: 8.6-19.4 months), respectively. No unexpected adverse effects were reported. Hypertension (20/37, 54.1%), anemia (16/37, 43.2%), alopecia (15/37, 40.5%), elevated transaminases (9/37, 24.3%) and alkaline phosphatase (9/37, 24.3%) were the most commonly reported AEs. Thirteen patients (35.1%) reported grade 3-5 AEs. No treatment-related deaths occurred during this study. CONCLUSION: The addition of anlotinib to standard etoposide/platinum chemotherapy achieved encouraging PFS and OS in previously untreated ES-SCLC patients, with an acceptable tolerability profile and no new safety signals observed.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Carboplatin , China , Etoposide , Humans , Indoles , Platinum/pharmacology , Platinum/therapeutic use , Prospective Studies , Quinolines
9.
Viruses ; 14(5)2022 04 21.
Article in English | MEDLINE | ID: covidwho-1822446

ABSTRACT

Coronaviruses (CoVs) consist of a large group of RNA viruses causing various diseases in humans and in lots of animals. Human coronavirus (HCoV) OC43, the prototype of beta-coronavirus discovered in the 1960s, has been circulating in humans for long time, and infection with other emerging strains of beta-coronavirus (SARS-CoV, SARS-CoV-2, and MERS-CoV) can lead to severe illness and death. In this study, we found that montelukast, a leukotriene receptor antagonist, potently inhibited the infection of HCoV-OC43 in distinct cells in a dose- and time- dependent manner. Additionally, the results showed that montelukast induced release of HCoV-OC43 genomic RNA by disrupting the integrity of the viral lipid membrane, and irreversibly inhibited viral infection. Considering the similarity among HCoV-OC43, MERS-CoV, and SARS-CoV-2, it suggests that montelukast may be a potential candidate for the treatment of human beta-coronavirus infection.


Subject(s)
COVID-19 Drug Treatment , Coronavirus OC43, Human , Middle East Respiratory Syndrome Coronavirus , Acetates/pharmacology , Animals , Cyclopropanes , Quinolines , SARS-CoV-2 , Sulfides
10.
Clin Pharmacol Ther ; 111(6): 1324-1333, 2022 06.
Article in English | MEDLINE | ID: covidwho-1802136

ABSTRACT

Cystic fibrosis transmembrane conductance regulator (CFTR) modulating therapies, including elexacaftor-tezacaftor-ivacaftor, are primarily eliminated through cytochrome P450 (CYP) 3A-mediated metabolism. This creates a therapeutic challenge to the treatment of coronavirus disease 2019 (COVID-19) with nirmatrelvir-ritonavir in people with cystic fibrosis (CF) due to the potential for significant drug-drug interactions (DDIs). However, the population with CF is more at risk of serious illness following COVID-19 infection and hence it is important to manage the DDI risk and provide treatment options. CYP3A-mediated DDI of elexacaftor-tezacaftor-ivacaftor was evaluated using a physiologically-based pharmacokinetic modeling approach. Modeling was performed incorporating physiological information and drug-dependent parameters of elexacaftor-tezacaftor-ivacaftor to predict the effect of ritonavir (the CYP3A inhibiting component of the combination) on the pharmacokinetics of elexacaftor-tezacaftor-ivacaftor. The elexacaftor-tezacaftor-ivacaftor models were verified using independent clinical pharmacokinetic and DDI data of elexacaftor-tezacaftor-ivacaftor with a range of CYP3A modulators. When ritonavir was administered on Days 1 through 5, the predicted area under the curve (AUC) ratio of ivacaftor (the most sensitive CYP3A substrate) on Day 6 was 9.31, indicating that its metabolism was strongly inhibited. Based on the predicted DDI, the dose of elexacaftor-tezacaftor-ivacaftor should be reduced when coadministered with nirmatrelvir-ritonavir to elexacaftor 200 mg-tezacaftor 100 mg-ivacaftor 150 mg on Days 1 and 5, with delayed resumption of full-dose elexacaftor-tezacaftor-ivacaftor on Day 9, considering the residual inhibitory effect of ritonavir as a mechanism-based inhibitor. The simulation predicts a regimen of elexacaftor-tezacaftor-ivacaftor administered concomitantly with nirmatrelvir-ritonavir in people with CF that will likely decrease the impact of the drug interaction.


Subject(s)
COVID-19 Drug Treatment , Cystic Fibrosis , Aminophenols/pharmacology , Benzodioxoles/pharmacology , Chloride Channel Agonists/therapeutic use , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator , Cytochrome P-450 CYP3A/metabolism , Drug Combinations , Drug Interactions , Humans , Indoles/pharmacology , Lactams/pharmacokinetics , Leucine/pharmacokinetics , Mutation , Nitriles/pharmacokinetics , Proline/pharmacokinetics , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrrolidines , Quinolines/pharmacology , Quinolones , Ritonavir/pharmacokinetics
11.
J Photochem Photobiol B ; 231: 112447, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1796437

ABSTRACT

Cuspareine as an antiviral alkaloid can be used in the treatment of COVID-19. In this study, we introduced the ionic liquids (ILs) concluded cuspareinium as a cation with CH3COO-, CF3COO-, and PF6 as anions. The optimized geometry, thermodynamic parameters, and reactivity descriptors were calculated with density functional theory (DFT) approach and time-dependent density functional theory (TD-DFT) using B3LYP/6-311G. In addition, the UV and IR spectra of the introduced ILs were investigated. Based on DFT calculation, the designed IL CH3COO- can be to the most suitable anions due to most solubility in the water. DFT studies displayed that all the introduced ILs have more polarity than pristine cuspareine and CH3COO--cuspareine is the most polarity due to high dipole moment. Also, the thermo- chemical data of the designed ionic liquids revealed that PF6-cuspareine is distinguished to be stable. A molecular docking study of the designed ILs with 6 LU7 protease was performed to display interactions and binding energy. Results of molecular docking displayed that CH3COO- ion liquid has the highest binding energy (- 7.20 kcal/mol) and Ala7, and Lys 5 residues are involved in an interaction. DFT and molecular docking studies of cuspareine as alkaloid based on ionic liquids can be helpful to for more pharmaceutical and biological researches of cuspareine as an antiviral agent against COVID-19.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Ionic Liquids , Alkaloids/pharmacology , Anions/chemistry , Antiviral Agents/pharmacology , Humans , Ionic Liquids/chemistry , Molecular Docking Simulation , Quinolines
12.
J Med Virol ; 94(5): 1950-1958, 2022 05.
Article in English | MEDLINE | ID: covidwho-1777576

ABSTRACT

The inflammatory/anti-inflammatory balance has an important role in the clinical course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (coronavirus disease [COVID-19]) infection, which has affected over 200 million people since it first appeared in China in December 2019. This study aimed to determine the effectiveness of montelukast, which has known anti-inflammatory and bronchodilatory effects, in these patients. The prospective randomized controlled study included 180 patients who were hospitalized in the infectious diseases department of our hospital between May and July 2021 and were diagnosed with the delta variant of SARS-CoV-2 by real-time polymerase chain reaction of nasopharyngeal swabs. The patients were divided into three groups and received only standard treatment according to national guidelines (Group 1) or standard treatment plus 10 mg/day montelukast (Group 2) or 20 mg/day montelukast (Group 3). Laboratory parameters and pulmonary function tests (PFTs) at admission and on Day 5 of treatment were compared. Comparison of laboratory parameters on Day 5 showed that Groups 2 and 3 had significantly lower levels of lactate dehydrogenase, fibrinogen, D-dimer, C-reactive protein, and procalcitonin compared with Group 1 (p = 0.04, 0.002, 0.05, 0.03, and 0.04, respectively). In the comparison between Groups 2 and 3, only fibrinogen was significantly lower in Group 3 (p = 0.02). PFT results did not differ between the groups at admission, while on Day 5, only Group 3 showed significant improvements in forced expiratory volume in 1 s, forced vital capacity, and peak expiratory flow 25-75 compared with admission (p = 0.001 for all). Montelukast may be beneficial in COVID-19 patients to maintain the inflammatory/anti-inflammatory balance, prevent respiratory failure through its bronchodilator activity, and reduce mortality.


Subject(s)
COVID-19 Drug Treatment , Acetates , Cyclopropanes , Humans , Prospective Studies , Quinolines , SARS-CoV-2 , Sulfides
13.
Molecules ; 27(6)2022 Mar 09.
Article in English | MEDLINE | ID: covidwho-1732134

ABSTRACT

In the search for new anti-HIV-1 agents, two forms of phenylamino-phenoxy-quinoline derivatives have been synthesized, namely, 2-phenylamino-4-phenoxy-quinoline and 6-phenylamino-4-phenoxy-quinoline. In this study, the binding interactions of phenylamino-phenoxy-quinoline derivatives and six commercially available drugs (hydroxychloroquine, ritonavir, remdesivir, S-217622, N3, and PF-07321332) with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) were investigated using molecular docking and the ONIOM method. The molecular docking showed the hydrogen bonding and hydrophobic interactions of all the compounds in the pocket of SARS-CoV-2 main protease (Mpro), which plays an important role for the division and proliferation of the virus into the cell. The binding free energy values between the ligands and Mpro ranged from -7.06 to -10.61 kcal/mol. The molecular docking and ONIOM results suggested that 4-(2',6'-dimethyl-4'-cyanophenoxy)-2-(4″-cyanophenyl)-aminoquinoline and 4-(4'-cyanophenoxy)-2-(4″-cyanophenyl)-aminoquinoline have low binding energy values and appropriate molecular properties; moreover, both compounds could bind to Mpro via hydrogen bonding and Pi-Pi stacking interactions with amino acid residues, namely, HIS41, GLU166, and GLN192. These amino acids are related to the proteolytic cleavage process of the catalytic triad mechanisms. Therefore, this study provides important information for further studies on synthetic quinoline derivatives as antiviral candidates in the treatment of SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Quinolines , Cysteine Endopeptidases/chemistry , Humans , Lactams , Leucine , Molecular Docking Simulation , Nitriles , Peptide Hydrolases , Proline , Quinolines/pharmacology , SARS-CoV-2 , Viral Proteins/metabolism
14.
Appl Microbiol Biotechnol ; 106(5-6): 2207-2218, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1712228

ABSTRACT

The pandemic of coronavirus disease 2019 (COVID-19) continues to threaten public health. For developing countries where vaccines are still in shortage, cheaper alternative molecular methods for SARS-CoV-2 identification can be crucial to prevent the next wave. Therefore, 14 primer sets recommended by the World Health Organization (WHO) was evaluated on testing both clinical patient and environmental samples with the gold standard diagnosis method, TaqMan-based RT-qPCR, and a cheaper alternative method, SYBR Green-based RT-qPCR. Using suitable primer sets, such as ORF1ab, 2019_nCoV_N1 and 2019_nCoV_N3, the performance of the SYBR Green approach was comparable or better than the TaqMan approach, even when considering the newly dominating or emerging variants, including Delta, Eta, Kappa, Lambda, Mu, and Omicron. ORF1ab and 2019_nCoV_N3 were the best combination for sensitive and reliable SARS-CoV-2 molecular diagnostics due to their high sensitivity, specificity, and broad accessibility. KEY POINTS: • With suitable primer sets, the SYBR Green method performs better than the TaqMan one. • With suitable primer sets, both methods should still detect the new variants well. • ORF1ab and 2019_nCoV_N3 were the best combination for SARS-CoV-2 detection.


Subject(s)
COVID-19 , SARS-CoV-2 , Benzothiazoles , COVID-19/diagnosis , Diamines , Humans , Quinolines , RNA, Viral/analysis , Real-Time Polymerase Chain Reaction/methods , SARS-CoV-2/genetics , Sensitivity and Specificity
15.
ChemMedChem ; 17(9): e202200005, 2022 05 04.
Article in English | MEDLINE | ID: covidwho-1705786

ABSTRACT

The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause life-threatening diseases in millions of people worldwide, in particular, in patients with cancer, and there is an urgent need for antiviral agents against this infection. While in vitro activities of artemisinins against SARS-CoV-2 and cancer have recently been demonstrated, no study of artemisinin and/or synthetic peroxide-based hybrid compounds active against both cancer and SARS-CoV-2 has been reported yet. However, the hybrid drug's properties (e. g., activity and/or selectivity) can be improved compared to its parent compounds and effective new agents can be obtained by modification/hybridization of existing drugs or bioactive natural products. In this study, a series of new artesunic acid and synthetic peroxide based new hybrids were synthesized and analyzed in vitro for the first time for their inhibitory activity against SARS-CoV-2 and leukemia cell lines. Several artesunic acid-derived hybrids exerted a similar or stronger potency against K562 leukemia cells (81-83 % inhibition values) than the reference drug doxorubicin (78 % inhibition value) and they were also more efficient than their parent compounds artesunic acid (49.2 % inhibition value) and quinoline derivative (5.5 % inhibition value). Interestingly, the same artesunic acid-quinoline hybrids also show inhibitory activity against SARS-CoV-2 in vitro (EC50 13-19 µm) and no cytotoxic effects on Vero E6 cells (CC50 up to 110 µM). These results provide a valuable basis for design of further artemisinin-derived hybrids to treat both cancer and SARS-CoV-2 infections.


Subject(s)
Artemisinins , COVID-19 Drug Treatment , Leukemia , Neoplasms , Quinolines , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Artemisinins/pharmacology , Chlorocebus aethiops , Humans , Leukemia/drug therapy , Neoplasms/drug therapy , Peroxides , Quinolines/therapeutic use , SARS-CoV-2 , Vero Cells
16.
Chemistry ; 28(4): e202200039, 2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1633218

ABSTRACT

Invited for the cover of this issue are Manfred Marschall, Svetlana B. Tsogoeva and co-workers at Friedrich-Alexander University of Erlangen-Nürnberg. The image depicts a new anti-SARS-CoV-2 compound in front of SARS-CoV-2 viruses. Read the full text of the article at 10.1002/chem.202103861.


Subject(s)
COVID-19 , Quinolines , Cell Culture Techniques , Humans , SARS-CoV-2
17.
Mol Divers ; 26(5): 2595-2612, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1615472

ABSTRACT

In the present study, we report the design and synthesis of novel amide-type hybrid molecules based on anthranilic acid and quinoline or ß-carboline heterocyclic scaffolds. Three types of biological screenings were performed: (i) in vitro antiproliferative screening against a panel of solid tumor and leukemia cell lines, (ii) antiviral screening against several RNA viruses, and (iii) anti-quorum sensing screening using gram-negative Chromobacterium violaceum as the reporter strain. Antiproliferative screening revealed a high activity of several compounds. Anthranilamides 12 and 13 with chloroquine core and halogenated anthranilic acid were the most active agents toward diverse cancer cell lines such as glioblastoma, pancreatic adenocarcinoma, colorectal carcinoma, lung carcinoma, acute lymphoblastic, acute myeloid, chronic myeloid leukemia, and non-Hodgkin lymphoma, but also against noncancerous cell lines. Boc-protected analogs 2 and 3 showed moderate activities against the tested cancer cells without toxic effects against noncancerous cells. A nonhalogenated quinoline derivative 10 with N-benzylanthranilic acid residue was equally active as 12 and 13 and selective toward tumor cells. Chloroquine and quinoline anthranilamides 10-13 exerted pronounced antiviral effect against human coronaviruses 229E and OC43, whereas 12 and 13 against coronavirus OC43 (EC50 values in low micromolar range; selectivity indices from 4.6 to > 10.4). Anthranilamides 14 and 16 with PQ core inhibited HIV-1 with EC50 values of 9.3 and 14.1 µM, respectively. Compound 13 displayed significant anti-quorum/biofilm effect against the quorum sensing reporter strain (IC50 of 3.7 µM) with no apparent bactericidal effect.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Quinolines , Amides , Anti-Bacterial Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Carbolines/pharmacology , Chloroquine , Humans , Quinolines/chemistry , Quinolines/pharmacology , ortho-Aminobenzoates
18.
Ann Palliat Med ; 11(8): 2751-2755, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1573038

ABSTRACT

Lenvatinib, a multi-tyrosine kinase inhibitor, is used for the treatment of thyroid carcinoma. However, it can cause pneumonia and pulmonary cavitation leading to pneumothorax. The mechanism underlying the occurrence of cavitation and pneumothorax is not well understood. Coronavirus disease 2019 (COVID-19), which is an infectious condition characterized primarily by pneumonia, is sometimes accompanied by pulmonary cavitation. Patients with COVID-19 who present with pulmonary cavitation may have a poor prognosis. In the present case, a patient with papillary thyroid carcinoma presented with multiple pulmonary metastatic tumors that were treated with lenvatinib. After 9 weeks from treatment initiation, he experienced fever and presented with pulmonary consolidation and ground-glass opacity (GGO). Pneumonia improved after the withdrawal of lenvatinib. After 21 weeks from treatment initiation, he developed fever again and the clinical tests led to the diagnosis of COVID-19. Computed tomography (CT) showed new GGO in both sides of the lung. Therefore, the patient was diagnosed with moderate COVID-19. He was treated with dexamethasone plus remdesivir, and GGO due to COVID-19 disappeared. However, the previous pulmonary shadow associated with lenvatinib became a cavitary lesion. The initial CT findings of COVID-19 and pneumonia associated with lenvatinib are similar. Thus, both conditions must be considered for a differential diagnosis in patients presenting with GGO during lenvatinib treatment.


Subject(s)
COVID-19 , Pneumonia , Pneumothorax , Thyroid Neoplasms , Humans , Male , Phenylurea Compounds , Quinolines , SARS-CoV-2 , Thyroid Neoplasms/complications , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/drug therapy
19.
Int Immunopharmacol ; 103: 108412, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1568781

ABSTRACT

Levocetirizine, a third-generation antihistamine, and montelukast, a leukotriene receptor antagonist, exhibit remarkable synergistic anti-inflammatory activity across a spectrum of signaling proteins, cell adhesion molecules, and leukocytes. By targeting cellular protein activity, they are uniquely positioned to treat the symptoms of COVID-19. Clinical data to date with an associated six-month follow-up, suggests the combination therapy may prevent the progression of the disease from mild to moderate to severe, as well as prevent/treat many of the aspects of 'Long COVID,' thereby cost effectively reducing both morbidity and mortality. To investigate patient outcomes, 53 consecutive COVID-19 test (+) cases (ages 3-90) from a well-established, single-center practice in Boston, Massachusetts, between March - November 2020, were treated with levocetirizine and montelukast in addition to then existing protocols [2]. The data set was retrospectively reviewed. Thirty-four cases were considered mild (64%), 17 moderate (32%), and 2 (4%) severe. Several patients presented with significant comorbidities (obesity: n = 22, 41%; diabetes: n = 10, 19%; hypertension: n = 24, 45%). Among the cohort there were no exclusions, no intubations, and no deaths. The pilot study in Massachusetts encompassed the first COVID-19 wave which peaked on April 23, 2020 as well as the ascending portion of the second wave in the fall. During this period the average weekly COVID-19 case mortality rate (confirmed deaths/confirmed cases) varied considerably between 1 and 7.5% [37]. FDA has approved a multicenter, randomized, placebo-controlled, Phase 2 clinical trial design, replete with electronic diaries and laboratory metrics to explore scientific questions not addressed herein.


Subject(s)
Acetates/therapeutic use , COVID-19 Drug Treatment , Cetirizine/therapeutic use , Cyclopropanes/therapeutic use , Histamine H1 Antagonists, Non-Sedating/therapeutic use , Leukotriene Antagonists/therapeutic use , Quinolines/therapeutic use , SARS-CoV-2/drug effects , Sulfides/therapeutic use , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Retrospective Studies , Treatment Outcome , Young Adult
20.
Chemistry ; 28(4): e202103861, 2022 Jan 19.
Article in English | MEDLINE | ID: covidwho-1549185

ABSTRACT

The presently ongoing pandemic of human SARS-CoV-2 infections (COVID-19) presents an enormous challenge in surveillance, vaccine and antiviral drug development. Here we report the synthesis of new bioactive quinoline-morpholine hybrid compounds and their virological evaluation, which proves pronounced cell culture-based inhibitory profile against SARS-CoV-2. Thus, selected quinoline compounds may suggest specific hit-to-lead development.


Subject(s)
COVID-19 , Quinolines , Antiviral Agents/pharmacology , Cell Culture Techniques , Humans , Pandemics , Quinolines/pharmacology , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL